
AN OPTIMAL FRAMEWORK FOR SUMMARIZATION OF STEREOSCOPIC
VIDEO SEQUENCES

Nikolaos D. Doulamis, Anastasios D. Doulamis, Yannis S. Avrithis,
Klimis S. Ntalianis and Stefanos D. Kollias

Electrical and Computer Engineering Department,
National Technical University of Athens

E-mail: ndoulam@image.ntua.gr

ABSTRACT
In this paper an optimal framework for
summarization of stereoscopic video sequences is
presented, which extracts a meaningful set of video
frames. Each sequence is first partitioned into
shots, the disparity field, occluded areas and depth
map are estimated and then a hierarchical color and
depth segmentation scheme is applied to each shot,
based on a multiresolution implementation of the
RSST algorithm. Color and depth segment fusion
is employed for achieving high-quality semantic
segmentation, and feature vectors are constructed
using a fuzzy classification formulation. For a
given shot, key frames are extracted using an
optimization method, namely, a genetic algorithm,
for locating frames of minimally correlated feature
vectors. Experimental results indicate the reliable
performance of the proposed scheme.

1. Introduction
The use of three-dimensional (3-D) video has

recently increased since it provides more efficient
visual representation and enhances multimedia
communication [1]. Three-dimensional video
description enables users to handle and manipulate
video objects more efficiently by exploiting, for
example, the depth information, provided by stereo
vision [2]. However, traditionally, 3-D (stereo or
multiview) image sequences are recorded
sequentially using slightly different viewpoints of
the same scene. Such video representation has a
number of limitations for the new emerging
multimedia applications, such as video browsing,
content-based indexing and retrieval. Currently, the
only way to browse a video is to sequentially scan
video frames, a process that is both time-
consuming and tedious. Furthermore, video queries
are insufficiently performed on entire video
sequences, due to significant temporal redundancy
of video content. So new methods for video content
representation should be implemented [3].

Recently, some approaches have been
proposed. In particular selection of a single key
frame for each shot has been presented in [3], [4],
which cannot provide sufficient information about
the video content. Construction of compact image

maps has been described in  [5]. Additionally a
method for analyzing video and building a pictorial
summary for visual representation has been
proposed in [6]. Although such approaches can be
very efficient for specific applications they cannot
provide very satisfactory results in real world
complex shots. Moreover, all the aforementioned
works are dealing with 2-D video sequences and
cannot be directly applied to 3-D video archives
since they do not exploit 3-D information.

In the context of this paper a generalized
framework for non-linear representation of 3-D
video sequences is proposed, regardless of the
scene complexity. We accomplished this by the
following steps: we merge color segments that
belong to similar depth. Color segments give very
accurate contours of the objects while segments of
video objects are usually located on the same depth
plane. To accelerate the color and depth
segmentation process a multiresolution
implementation of the Recursive Shortest Spanning
Tree (RSST) algorithm is presented.  All features
extracted by the video sequence analysis module
are gathered together using a fuzzy feature vector
formulation to increase the robustness of the
proposed summarization scheme. Finally, key
frames within each shot are extracted by
minimizing a cross correlation criterion by means
of a genetic algorithm.

2. Analysis of Stereo Video Sequences
The analysis of the 3-D sequences starts by

calculating the disparity field. Let us assume that
the variable Z expresses the depth. Let us also
consider as (x1,y1) and (x2,y2) two image points
generated by the perspective projection of a 3-D
point w onto the two image planes I1 and I2. In
particular by denoting as d(x1,y1) the disparity
vector at location (x1,y1) in camera 1 with respect
to camera 2, the vector d(x1,y1) = [dx(x1,y1)
dy(x1,y1)]

T  is given by

dx=dx(x1,y1)=x2-x1= )(1 Zf                             (1a)

       dy=dy(x1,y1)=y2-y1= )(2 Zf                             (1b)

Therefore if the disparity vector is known, (1)
reduces to an overdetermined linear system of two



equations with a single unknown, i.e, Z, and a
least-squares solution can be obtained.
         Although computation of depth from
disparity is straightforward, the estimation of
disparity field from the images on planes I1 and I2,
is an elaborate task that involves matching of each
point (x1,y1) on I1 with a corresponding point
(x2,y2) on I2, resulting in a high computational cost.
Disparity estimation is accomplished by means of a
block matching algorithm, similar to the one
described in [2]. In Figure 1, we present the
original left, right channel images and the disparity
estimation and depth map for the Aqua sequence.
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Figure 1. Disparity and depth estimation for the Aqua
sequence. (a) Left and (b) right channel image, (c)
horizontal disparity field and (d) depth map.

3. Detection and Compensation of
Occluded Areas
The above estimation of the disparity assumes

that a corresponding point of image I2 can always
be found for all points of image I1. However, due
to interposition of foreground objects there may be
areas of I1 that are occluded in I2. As a result for
every horizontal line segment that is visible by
camera 1 (2) and occluded from camera 2 (1),
when traversing the segment from left to right,
there is a horizontal disparity decrease in I2 that is
equal to the length of the line segment [7].

(a) (b)

Figure 2. Occlusion detection and compensation for the
Aqua sequence. (a) Compensated horizontal disparity
field and (b) compensated depth map.

All disparity values obtained through the
previous minimization procedure for occluded
areas of image I1 are not reliable and thus may
result in incorrect depth segmentation. Therefore, it
is clear that (i) these areas should be detected, and
(ii) occlusion should be compensated by assigning

appropriate disparity values to detected areas. The
former task, occlusion detection, is accomplished
by locating regions of I1 where the horizontal
disparity decreases continuously with respect to the
horizontal coordinate x1 with a slope approximately
equal to –1. The latter task, occlusion
compensation, is tackled by keeping disparity
constant in each occluded area, and equal to the
maximum disparity value of that area. In Figure 2
the occlusion detection and compensation for the
Aqua sequence are presented.

4. Video Object Segmentation
The next step of the algorithm is to segment

stereo image sequences into semantically
meaningful objects. However, semantic video
object segmentation is a difficult task with the
exception of some specific applications [8]. As we
are interested in a fully automatic segmentation
algorithm, which is not restricted to specific
applications, features computed from the previous
analysis, including color and depth information, are
used to describe the stereo visual content. In
particular, we use the Recursive Shortest Spanning
Tree (RSST) algorithm and a segmentation fusion
technique, which is presented in the next sub-
section. The RRST algorithm was selected because
it does not impose any external constraint on the
image and also permits simple control over the
number of segmented regions [9]. However, the
bottleneck of the algorithm is its computational
complexity. For this reason, a new multiresolution
implementation of the RSST, called M-RSST, is
used in this paper, which recursively applies the
RSST to images of increasing resolution. This
approach, apart from accelerating the segmentation
procedure, also reduces the number of small
objects, which is a useful property in the context of
the proposed video summarization scheme. In
Figure 3(a) color segmentation results of the Aqua
sequence are presented while in Figure 3(b) we can
see depth segmentation results for the same
sequence.

(a) (b)

Figure 3. (a) Color segmentation using the M-RSST for
the aqua sequence. (b) The respective depth
segmentation.

Object boundaries (contours) cannot be
identified with high accuracy by a depth
segmentation algorithm, due to erroneous
estimation of disparity field and occlusion issues.
On the contrary, segmentation based on color



homogeneity criteria, contains the most reliable
object boundaries. Therefore, color and depth
segments are appropriately fused together so that a
more precise content-based segmentation is
accomplished.

Let us assume that cK  color segments and
dK  depth segments have been extracted by the

aforementioned M-RSST algorithm, denoted asc
iS ,

cKi ,,2,1 �=  and d
iS  , dKi ,,2,1 �=   respectively. Let

us also denote by cG  and dG  the output masks of
color and depth segmentation, which are defined as
the sets of all color and depth segments
respectively:
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Color segments are projected onto depth
segments so that video objects provided by depth
segmentation are retained and, at the same time,
object boundaries given by color segmentation are
accurately extracted. For this reason, each color

segment c
iS  is associated with a depth segment, so

that the area of intersection between the two
segments is maximized. This is accomplished by
means of a projection function:
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where )(⋅a  is the area, i.e., the number of pixels, of

a segment. Based on the previous equation, dK

sets of color segments, say iC , dKi ,,2,1 �= , are

defined, each of which contains all color segments
that are projected onto the same depth segment

d
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Figure 4. Object extraction after the segmentation fusion
for the Aqua sequence.

Then, the final segmentation mask, G, consists of
dKK =  segments iS , dKi ,,2,1 �= , each of which is

generated as the union of all elements of the
corresponding set iC . In Figure 4 the object

extraction after the segmentation fusion for the
Aqua sequence is shown.

5. Stereo Video Summarization
All features extracted by the stereoscopic

video sequence analysis are used to describe the
visual content of each video frame. However, they

are not directly included in a vector to be used for
this purpose, since their size differs between
frames. To overcome this problem, we classify
color as well as depth segments into pre-
determined classes, forming a multidimensional
histogram. In this framework, each feature vector
element corresponds to a specific feature class (or a
bin) and contains the number of segments that
belong to this class. In order to reduce the
possibility of classifying two similar segments to
different classes, causing erroneous comparisons, a
degree of membership is allocated to each class,
resulting in a fuzzy classification formulation [9].

Then, in order to analyze an entire
stereoscopic video sequence and extract
summarization of its visual content, a shot cut
detection algorithm is applied in the beginning. In
our approach the algorithm proposed in [10] has
been adopted for shot detection due to its
efficiency and low computational complexity.
Then for every shot we perform key frame
extraction. The most characteristic frames for each
shot are extracted the ones with the minimum
correlation among all the frames of the given shot.
For this reason, we define a correlation measure

)(aFR  of the frame feature vectors in a shot as
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The vector a contains the indices of the frames
within the examined shot while FK  is the number

of selected frames and ρ  the respective
correlation.

Unfortunately, the complexity of an exhaustive
search for the minimum value of )(aFR  is such that

a direct implementation would be practically
unfeasible. For this reason, a genetic algorithm
(GA) [11] approach is adopted. In this approach,
possible solutions of the optimization problem, i.e.,
sets of frames, are represented by chromosomes
whose genetic material consists of frame numbers
(indices). Chromosomes are thus represented by
index vectors following an integer number
encoding scheme. An initial population of P
chromosomes, ),,()0( 1 PaaA �=  is generated and

used for the creation of new generation populations
A(n), n>0. The correlation measure )(aFR  is used

as an objective function to estimate the
performance of all chromosomes Pii ,,1, �=a  in a

given population. Then, a proportionate scheme is
used for parent selection [11], and a set of new
chromosomes (offspring) is produced by mating
the selected parent chromosomes and applying a
crossover operator. Finally, mutation is applied to
the newly created chromosomes, introducing
random gene variations that are useful for restoring



lost genetic material, or for producing new material
that corresponds to new search areas.
Once new chromosomes have been generated for a
given population 0),( ≥nnA , the next generation

population, )1( +nA , is formed by inserting those
new chromosomes into )(nA  and deleting an
appropriate number of older chromosomes, so that
each population consists of P members. Several
cycles need to take place, that is, several
generations 0),( ≥nnA  need to be produced until

the population converges to an optimal solution.
Usually the GA terminates when the best
chromosome fitness remains constant for a large
number of generations, indicating that further
optimization is unlikely.

#3787 #3801 #3815 #3829 #3843

#3857 #3871 #3885 #3899 #3913

#3927 #3941 #3955 #3969
Figure 5. Shot 38 from “Eye to eye” sequence with 88
frames, shown with one frame every 14.

Frame 3805 Frame 3823 Frame 3848 Frame 3960
Figure 6. The selected frames of shot 38.

6. Experimental Results
The 3-D stereoscopic television program “Eye

to Eye”, of total duration 25 minutes (12,739
frames at 10 frames/sec), has been used in our
experiments for the evaluation of the proposed
summarization scheme. The stereo video sequence
is analyzed according to the described procedure
and key-frames are extracted using the genetic
algorithm. In Figure 5, shot 38 of the sequence is
illustrated, where for presentation purposes, one
frame every 7 is shown. The shot consists of 188
frames (stereo pairs) and represents an outdoor
crowded scene with considerable camera motion.
Furthermore, in Figure 6 we can see the KF=4 key
frames which were extracted by the proposed
technique for shot 38.

Finally, Figure 7 presents the minimum value
of the correlation measure versus the cycle of the
genetic algorithm for shot 38. As expected the

)(aFR  decreases as the GA cycle increases, until it

reaches a minimum.
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Figure 7. (a) Histogram of correlation measure, together
with minimum value obtained from genetic algorithm
(vertical dashed line) (b) convergence of genetic
algorithm.
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